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Abstract A Bayesian framework for uncertainty quantification and propagation in
complex structural dynamics simulations using vibrationmeasurements is presented.
The framework covers uncertainty quantification techniques for parameter estima-
tion and model selection, as well as uncertainty propagation techniques for robust
prediction of output quantities of interest in reliability and safety of the structural sys-
tems analyzed. Bayesian computational tools such as asymptotic approximation and
sampling algorithms are presented. The Bayesian framework and the computational
tools are implemented for linear and nonlinear finite element models in structural
dynamics using either identified modal frequencies, measured response time histo-
ries, or frequency response spectra. High performance computing techniques that
drastically reduce the excessive computational demands that arise from the large
number of system simulations are outlined. Identified modal properties from a full-
scale bridge demonstrate the use of the proposed framework for parameter estimation
of linear FE models.

1 Introduction

In the process of simulating the behavior of complex engineering systems, uncer-
tainties arise mainly from the assumptions and compromises that enter into the
development of mathematical models of such systems and the applied loads. Such
uncertainties lead to significant uncertainties in the predictions made using simula-
tions. Since predictions form the basis for making decisions, the knowledge of these
uncertainties is very important.

The sources of uncertainties in engineering simulations are modeling uncertain-
ties, loading uncertainties, and numerical uncertainties. Modeling uncertainties are
related to the inadequacy of the mathematical model to represent a physical system.
They arise in modeling the constitute behavior of materials, the support conditions
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of structures and their interaction with their environment, the interaction/coupling
between substructures (fixity conditions, friction mechanisms, impact phenomena),
the geometric variability due to manufacturing/construction processes, the long-term
deteriorationmechanisms (e.g., semiempiricalmodels for fatigue and corrosion), etc.
The parametric uncertainties, originating in the limited knowledge about the values
of the model parameters, are also considered as part of the modeling uncertainties.
Loading uncertainties arising from the lack of detailed knowledge of the spatial and
temporal variation of the forces (mechanical, thermal, etc.) applied to engineering
structures. Representative examples of loading uncertainties in structural dynam-
ics include spatial variability of road roughness affecting the dynamics of vehicles,
spatial and temporal variability of wind or earthquake-induced excitations on civil
engineering structures, turbulent wind loads affecting the design and maintenance of
aircrafts, variability of thermal loads affecting the design of a large class of mechan-
ical and aerospace structures. Numerical uncertainties are related to the spatial (e.g.,
finite element) and temporal (numerical time integration schemes) discretization of
the partial differential equations used for simulating the behavior of engineering
structures, round-off errors due to computer accuracies, all affecting solution accu-
racy.

Probability distribution is often used to quantify uncertainties and probability
calculus is employed to propagate these uncertainties to prior robust predictions of
output quantities of interest (QoI). The measured data collected from system compo-
nent tests or system operation through monitoring can provide valuable information
for improving the mathematical models and the probability models of uncertainties
of both the system and loads. Incorporating these data-driven updated models in
simulations will yield updated or posterior robust predictions, constituting improved
and more reliable estimates of the system performance. However, the computational
science tools for handling uncertainties, based on test/monitoring data, in simulations
are conceptually and computationally much more challenging than the conventional
computing tools (Oden et al. 2006). The objective of this chapter is to present a
comprehensive Bayesian probabilistic framework for uncertainty quantification and
propagation (UQ+P) in complex structural dynamics simulations based on test data.
Bayesian analysis (Beck andKatafygiotis 1998; Beck 2010; Yuen 2010) provides the
logical and computational framework to combine knowledge from test/monitoring
data and models in a consistent way. The Bayesian framework exploits the avail-
able measured data and any prior information based on engineering experience, to
perform the following tasks:

• Identify and select the most probable mathematical models among a competi-
tive family of mathematical models (linear vs. nonlinear models; elastic vs. hys-
teretic models; friction/impact models; correlation structure of a spatially varying
quantities such as modulus of elasticity) introduced to represent the behavior of
mechanical components.

• Identify probabilistic models that best account in predictions for the mismatch
between model-based predictions and measurements, manifested due to the inad-
equacy/imperfections of the mechanical models used.
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• Calibrate the parametric uncertainties involved in mechanical and prediction error
models.

• Propagate uncertainties in simulations for updating robust predictions taking into
account the validated models and the calibrated uncertainties, as well as rationally
weight the effect of one or more highly probable models promoted by the Bayesian
methodology.

A Bayesian probabilistic framework is developed in Sect. 2 for UQ+P in complex
structural dynamics simulations using vibration measurements collected during sys-
tem operation. The Bayesian tools used to carry out the computations are presented
in Sect. 3. Such tools include asymptotic approximations presented in Sect. 3.1 and
sampling algorithms discussed in Sect. 3.2. Among the sampling algorithms, the
TMCMC is applied in this work to perform UQ+P. In Sect. 4, the implementation
of the Bayesian framework for UQ+P in structural dynamics is presented. The for-
mulation for linear models based on modal frequencies and mode shapes is given in
Sect. 4.1. For nonlinear models, the Bayesian UQ+P formulation is based on either
full response time histories or nonlinear frequency response spectra. Details of the
formulations are given Sect. 4.2.

The simulations of the structure are performed using high-fidelity complex finite
element (FE) models that may combine linear and nonlinear components. For FE
models involving hundreds of thousands or even million degrees of freedom and
localized nonlinear actions activated during system operation, the computational
demands in the Bayesian framework may be excessive. Methods for drastically
reducing the computational demands at the system, algorithm, and hardware lev-
els involved in the implementation of Bayesian tools are outlined. Such methods
include component mode synthesis techniques, consistent with parameterization, to
drastically reduce the models of linear components of systems (Papadimitriou and
Papadioti 2013; Jensen et al. 2014), surrogate models (Lophaven et al. 2002) to
drastically reduce the number of computationally expensive full model runs (Ange-
likopoulos et al. 2015), and parallel computing algorithms (Angelikopoulos et al.
2012; Hadjidoukas et al. 2015) to efficiently distribute the computations in available
multi-core CPUs.

The applicability, effectiveness, and accuracy of the proposed techniques are
demonstrated using high-fidelity linear FE models and field measurements for a
motorway bridge. For nonlinear FEmodels, the effectiveness of the proposed asymp-
totic approximations and sampling algorithms can be found in Giagopoulos et al.
(2006, 2013), Green (2015).

2 Bayesian Uncertainty Quantification
and Propagation Framework

Consider a parameterized class Mm of structural dynamics models used to predict
various outputQoI of a system.Let θm ∈ RNm be a set of parameters in thismodel class
that need to be estimated using experimental data and f (θm|Mm) bemodel predictions
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of output QoI given a value of the parameter set θm. Probability distribution functions
(PDF) are used to quantify the uncertainty in the parameters θm. The probability
distribution of the parameter set θm quantifies how plausible is each possible value
of the model parameters. The user may assign a prior probability distribution πm(θm)

to the model parameters to incorporate prior information on the values of the model
parameters. The structural model and uncertainty propagation algorithms can be
used to identify the uncertainty in the prediction of the output QoI. However, the
probability distribution πm(θm) is subjective based on previous knowledge and user
experience.

2.1 Parameter Estimation

In Bayesian inference, the interest lies in updating the probability distribution of
the model parameters θm based on measurements and then propagate these uncer-
tainties through the structural dynamics model to quantify the uncertainty in the
output QoI. For this, let D ≡ ŷ = {ŷr ∈ RN0 , r = 1, . . . ,m} be a set of observations
available from experiments, where N0 is the number of observations. The Bayesian
formulation starts by building a probabilistic model that characterizes the discrep-
ancy between themodel predictions f (θm|Mm) obtained from a particular value of the
model parameters θm and the corresponding data ŷ. This discrepancy always exists
due to measurement, model, and computational errors. An error term e is introduced
to denote this discrepancy. The observation data and the model predictions satisfy
the prediction error equation

ŷ = f (θm|Mm) + e (1)

A probabilistic structure for the prediction error should be defined to proceed
with the Bayesian calibration. Let Me be a family of probability model classes for
the error term e. This model class depends on a set of prediction error parameters
θe to be determined using the experimental data. Similarly to the structural model
parameters θm, the probability distribution πe(θe) is also assigned to quantify the
possible values of the prediction error parameters θe.

The Bayesian approach (Beck and Katafygiotis 1998; Beck 2010) to model cali-
bration is used for updating the values of the combined set θ = (θm, θe) associated
with the structural and the prediction error parameters. The parameters θm and θe
can be considered to be independent with prior probability distribution for the com-
bined set given by π(θ|M) = πm(θm|Mm)πe(θe|Me), whereM = {Mm,Me} includes
the structural and prediction error model classes. The updated PDF p(θ|D,M) of the
parameters θ, given the data D and the model class M, results from the application
of the Bayes theorem

p(θ|D,M) = p(D|θ,M) π(θ|M)

p(D|M)
(2)
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where p(D|θ,M) is the likelihood of observing the data from the model class and
p(D|M) is the evidence of the model, given by the multidimensional integral

p(D|M) =
∫

�

p(D|θ,M) π(θ|M) dθ (3)

over the space of the uncertain model parameters.
The updated probability distribution of the model parameters depends on the

selection of the prediction error e. Invoking the maximum entropy principle, a nor-
mal distribution e ∼ N(μ, �), where μ is the mean and � is the covariance matrix,
is a reasonable choice for the error since the normal distribution is the least infor-
mative among all distributions with the specified lowest two moments. The structure
imposed on the mean vector μ and the covariance matrix � affects the uncertainty
in the model parameter estimates. A zero-mean model error is usually assumed so
that μ = 0. However, to take into account the bias in the model predictions of the
various response quantities involved in f (θm|Mm) and try to reconcile conflicting
predictions, one could introduce a shift in the predictions by taking μ �= 0. In this
case the parameters defining the structure of μ are part of the unknowns in θe to be
determined by the Bayesian technique. A diagonal matrix is a reasonable choice for
the covariance matrix in the case where the components of the prediction error can be
considered to be uncorrelated. This holds in the case of uncorrelated measurements
in ŷ and independent components in the prediction vector f (θm|Mm). As a result, the
covariance matrix takes the form � = diag(σ2

r ŷ
2
r ), where the variance parameters

σ2
r are part of the unknown constants in θe to be determined by the Bayesian cal-

ibration. In structural dynamics, the effect of prediction error correlation has been
investigated and found to affect the results of the model calibration when the sensors
are closely located (Simoen et al. 2013b). Depending on the nature of the simulated
QoI, alternative prediction error models can also be used.

Using the prediction error equation (1), the measured quantities follow the normal
distribution ŷ ∼ N( f (θm|D) + μ(θe),�(θe)),where the explicit dependenceofμ(θe)
and �(θe) on θe is introduced to point out that the mean and the covariance of the
overall normal prediction error model depend only on the model prediction error
parameters θe and is independent of the structural parameters θm. Consequently, the
likelihood p(D|θ,M) of observing the data follows the multivariable normal distri-
bution given by

p(D|θ,M) = |�(θe)|−1/2

(2π)m/2 exp

[
−1

2
J(θ;M)

]
(4)

where

J(θ;M) = [ŷ − f (θm|Mm) − μ(θe)]T�−1(θe)[ŷ − f (θm|Mm) − μ(θe)] (5)
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The selection of the prior distribution affects the posterior distribution of themodel
parameters for the case of relatively small number of data. Usually a noninformative
prior can be used. For example, a uniform distribution of the model parameters does
not give any preference to the values of the model parameters given the data. For
cases of large number of model parameters where unidentifiability issues may occur,
a Gaussian prior can avoid unidentifiability issues and enable the estimation of the
model parameters using Bayesian numerical analysis tools, avoiding convergence
problems of the gradient and stochastic optimization techniques used in Bayesian
asymptotic approximations.

2.2 Model Selection

The Bayesian probabilistic framework can also be used to compare two or more
competing model classes and select the optimal model class based on the available
data. Consider a family MFam = {Mi, i = 1, . . . ,κ}, of κ alternative, competing,
parameterized FE and prediction error model classes, and let θi ∈ RNθi be the free
parameters of the model class Mi. The posterior probability Pr(Mi|D) of the i-th
model class given the data D is (Beck and Yuen 2004; Yuen 2010)

Pr(Mi|D) = p(D|Mi) Pr(Mi)

p(D|MFam)
(6)

where Pr(Mi) is the prior probability and p(D|Mi) is the evidence of the model class
Mi. The optimal model class Mbest is selected as the one that maximizes Pr(Mi|D)

given by (6). Model class selection is used to compare between alternative model
classes and select the best model class (Muto and Beck 2008). The model class
selection can also be used to identify the location and severity of damage (Ntotsios
et al. 2009).

2.3 Uncertainty Propagation for Robust Prior
and Posterior Predictions

Let q be a scalar output QoI of the system. Prior robust predictions, before the avail-
ability of measured data, are derived by propagating the prior uncertainties in the
model parameters quantified by the prior PDF π(θ|M). Posterior robust predictions
of q are obtained by taking into account the updated uncertainties in the model para-
meters given the measurements D. Let p(q|θ,M) be the conditional probability dis-
tribution of q given the values of the parameters. Using the total probability theorem,
the prior and posterior robust probability distribution p(q|M) of q, taking into account
the model M, is given by (Papadimitriou et al. 2001; Beck and Taflanidis 2013)
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p(q|M) =
∫

p(q|θ,M) p(θ|M) dθ (7)

as an average of the conditional probability distribution p(q|θ,M) weighting by the
PDF p(θ|M) of the model parameters, where p(θ|M) ≡ π(θ|M) for prior estimate in
the absence of data, or p(θ|M) ≡ p(θ|D,M) for posterior estimate given the data D,
respectively.

Let G(q; θ) be a performance measure of the system which depends on the deter-
ministic output QoI q(θ). The prior robust performance measure E[G(q; θ)|M)] ≡
Eπ[G(q; θ)|M)] or the posterior robust performance measure E[G(q; θ)|M)] ≡
Ep[G(q; θ)|D,M)] given the data D is

E[G(q; θ)|M)] =
∫

G(q; θ) p(θ|M) dθ (8)

where p(θ|M) is either the prior PDF π(θ|M) or the posterior PDF p(θ|D,M),
respectively.

2.3.1 Simplified Measures of Uncertainties in Output QoI

Robust predictions of q that account for the uncertainty in θ are also obtained by
simplified measures such as mean and variance σq

2 = E[q2(θ)] − m1
2 = m2

2 − m1
2

with respect to θ, derived from the first two moments mk of q(θ), k = 1, 2, given by
the multidimensional integrals

mk =
∫

[q(θ)]k p(θ|M) dθ (9)

over the uncertain parameter space. The integral (9) is a special case of (8) by selecting
G(q; θ) = [q(θ)]k . Computational tools for estimating themultidimensional integrals
are presented in Sect. 3.

2.3.2 Prior and Posterior Robust Reliability

A more challenging problem in uncertainty propagation is the estimation of rare
events. This is important in analyzing system reliability or, its complement, prob-
ability of failure, or probability of unacceptable performance. The probability of
failure is the probability that one or more output QoI exceed certain threshold levels
or more generally as the probability that the system performance falls within a failure
domain F defined usually by one or more inequality equations.
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Let Pr(θ|M) be the probability of failure of the system conditioned on the value
of the parameter set θ. The robust prior or robust posterior reliability (Papadim-
itriou et al. 2001; Beck and Taflanidis 2013) or its complement failure probability is
obtained by evaluating the multidimensional probability integral

PF(M) =
∫

Pr(θ|M) p(θ|M) dθ (10)

where p(θ|M) ≡ π(θ|M) for prior probability of failure estimate or p(θ|M) ≡
p(θ|D,M) for posterior estimate given the data D, respectively. Assuming that a
set of independent random variables ψ are used to quantify input and system uncer-
tainties that are not associated with the ones involved in θ, the failure probability can
also be written in the form

PF(M) = Pr(z ∈ F|M) =
∫

IF(z) p(z|M) dz (11)

where z = (ψ, θ) is the augmented set of uncertain parameters, F is a failure region
in the augmented parameter space, and IF is an indicator function which is 1 if z ∈ F
and 0 elsewhere over the space of feasible system parameters z.

3 Bayesian Computational Tools

3.1 Asymptotic Approximations

3.1.1 Posterior PDF

For large enough number of measured data, the posterior distribution of the model
parameters in (2) can be asymptotically approximated by a Gaussian distribution
(Beck and Katafygiotis 1998)

p(θ|D,M) ≈ |C(θ̂)|−1/2

(2π)Nθ/2
exp

[
−1

2
(θ − θ̂)

T
C−1(θ̂)(θ − θ̂)

]
(12)

centered at the most probable value θ̂ of the model parameters obtained by maximiz-
ing the posterior PDF p(θ|D,M) or, equivalently, minimizing the function

g(θ;M) = − ln p(θ|D,M) = 1

2
J(θ;M) + 1

2
|C(θe)| − ln π(θ|M) + Nθ

2
ln(2π)

(13)
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with covariance matrix C(θ̂) = h−1(θ̂) equal to the inverse of the Hessian h(θ) =
∇∇Tg(θ,M) of the function g(θ;M) in (13) evaluated at the most probable value
θ̂. This approximation is also known as the Bayesian central limit theorem. The
asymptotic result (12), although approximate, provides a good representation of the
posterior PDF for a number of applications involving even a relatively small number
of data.

The asymptotic approximation (12) fails to provide an adequate representation
of the posterior probability distribution in the case of multimodal distributions. To
improve on the asymptotic approximation, one needs to identify all modes of the
posterior PDF and take them into account in the asymptotic expression by consid-
ering a weighted contribution of each mode with weights based on the probability
volume of the PDF in the neighborhood of each mode (Beck and Katafygiotis 1998).
The weighted estimate is reasonable, provided that the modes are separable. For
interacting modes or closely spaced modes this estimate is inaccurate due to overlap-
ping of the regions of high probability volume involved in the interaction. However,
implementation problems exists in multimodal cases, due to the inconvenience in
estimating all modes of the distribution (Katafygiotis and Beck 1998). Asymptotic
approximations have also been introduced to handle the unidentifiable cases (Katafy-
giotis and Lam 2002; Katafygiotis et al. 2000) manifested for relatively large number
of model parameters in relation to the information contained in the data.

3.1.2 Model Selection

Formodel selection, an asymptotic approximation (Beck andYuen 2004; Yuen 2010;
Papadimitriou and Katafygiotis 2001) based on Laplace method can also be used to
give an estimate of the evidence integral in (3) that appears in the model selec-
tion equation (6). Substituting this estimate in (6), the final asymptotic estimate for
P(Mi|D) is given in the form

Pr(Mi|D) =
(√

2π
)Nθi p(D|θ̂i,Mi) π(θ̂i|Mi)√

det
[
hi(θ̂i,Mi)

] Pr(Mi)

p(D|MFam)
(14)

where θ̂i is the most probable value of the parameters of the model class Mi and
hi(θ) = ∇∇Tgi(θ,M) is the Hessian of the function gi(θi;Mi) given in (13) for
the model class M ≡ Mi. It should be noted that the asymptotic estimate for the
probability of a model class Mi can readily be obtained given the most probable
value and the Hessian of the particular mode. For the multimodal case the expression
(14) can be generalized by adding the contributions from all modes.
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3.1.3 Posterior Robust Predictions

For the posterior robust prediction integrals such as (7) or (8) with p(θ|M) ≡
p(θ|D,M), a similar asymptotic approximation can be applied to simplify the inte-
grals. Specifically, substituting the posterior PDF p(θ|D,M) from (2) into (8), one
obtains that the robust prediction integral is given by (Papadimitriou et al. 1997,
2001)

E[G(q; θ)|D,M)] = 1

p(D|M)

∫
G(θ;M) p(D|θ,M) π(θ|M) dθ (15)

Introducing the function

rG(θ;M) = − ln[G(θ;M) p(D|θ,M) π(θ|M)] (16)

the integral in (15) takes the form of Laplace integral which can be approximated as
before in the form

∫
exp[−rG(θ)] dθ =

exp[−rG(θ̃)]
[√

2π
]Nθ

√
det

[
hG(θ̃)

] (17)

where θ̃ is the value of θ that minimizes the function rG(θ;M), and hG(θ̃,M) is the
Hessian of the function rG(θ;M) evaluated at θ̃. Substituting in (15), using (14) to
asymptotically approximate the term p(D|M) and replacing rG(θ) by (16), it can
be readily derived that E[G(q; θ)|D,M)] is given by the asymptotic approximation
(Tierney and Kadane 1986)

E[G(q)|D,M)] = G(θ̃;M)
p(D|θ̃,M)

p(D|θ̂,M)

π(θ̃|M)

π(θ̂|M)

√√√√√ det
[
h(θ̂,M)

]

det
[
hG(θ̃,M)

] (18)

The error in the asymptotic estimate is of order N−2, i.e., inversely proportional
to the square of the number of data. The asymptotic estimate requires solving two
extra optimization problems, one for the mean and one for the variance of G(q; θ).
In general, one needs to carry out 2Nq extra-optimization problems, where Nq is the
number of output quantities of interest. Such optimization problems are independent
and can be performed in parallel.

Similarly, the asymptotic approximation can be applied to provide an estimate
for the posterior robust probability distribution p(q|D,M) of q defined in (7) for
p(θ|M) ≡ p(θ|D,M), the posterior PDF. However, asymptotic approximations are
not applicable in the case of computing the robust reliability integral (11). Instead,
sampling algorithms can be used in this case as will be discussed in Sect. 3.2.
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3.1.4 Gradient-Based Optimization Algorithms

The optimization problems that arise in the asymptotic approximations are solved
using available single-objective optimization algorithms.Theoptimizationofg(θ;M)

given in (13) and the optimization of rG(θ;M) given in (16) with respect to θ can
readily be carried out numerically using any available algorithm for optimizing a
nonlinear function of several variables. In particular, iterative gradient-based opti-
mization algorithms can be conveniently used to achieve fast convergence to the
optimum. However, to guarantee the convergence of the gradient-based algorithms
for models involving a relatively large number of DOFs, analytical equations for
the gradients of the response QoI involved in the objective functions g(θ;M) and
rG(θ;M) are required. The computational effort scaleswith the number of parameters
in θ.

Adjoint methods provide a computationally very effective way to estimate the
gradients of the objective function with respect to all parameters by solving a sin-
gle adjoint problem, making the computational effort independent of the number
of variables in the set θ. A review of a model nonintrusive adjoint method for the
case of Bayesian UQ based on modal frequencies and modeshapes is given in Ntot-
sios and Papadimitriou (2008). For nonlinear models of structures, the techniques for
computing gradients of the objectives with respect to the parameters are model intru-
sive, requiring tedious algorithmic and software development that in most cases are
not easily integrated within the commercial software packages. Selected examples
of model intrusiveness includes the sensitivity formulation for hysteretic-type non-
linearities in structural dynamics and earthquake engineering (Barbato et al. 2007;
Barbato and Conte 2005). The adjoint formulation requires considerable algorithmic
development time to set up the equations for the adjoint problem and implement
this formulation in software. Moreover, there are cases of systems and type of non-
linearities (e.g., contact, sliding and impact) where the development of an adjoint
formulation or analytical equations for the sensitivity of objective functions to para-
meters is not possible. Derivative-free techniques such as evolution strategies are
more appropriate to use in such cases.

3.1.5 Stochastic Optimization Algorithms

Stochastic optimization algorithms are random search algorithms that explore better
the parameter space for detecting the neighborhood of the global optimum, avoid-
ing premature convergence to a local optimum. In addition, stochastic optimization
algorithms do not require the evaluation of the gradient of the objective function
with respect to the parameters. Thus, they are model nonintrusive since there is
no need to formulate the equations for the derivatives either by direct or adjoint
techniques. Despite their slow convergence, evolutionary strategies are highly par-
allelizable so the time-to-solution in a HPC environment is often comparable to
conventional gradient-based optimization methods (Hadjidoukas et al. 2015).
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Stochastic optimization algorithms can be used with parallel computing environ-
ments to find the optimum for non-smooth functions or for models for which an
adjoint formulation is not possible to develop. Examples include hysteretic models
of structural components, as well as problems involving contact, sliding, and impact.
In the absence of a HPC environment, the disadvantage of the stochastic optimization
algorithms arises from the high number of system reanalyses which may make the
computational effort excessive for real-world problems for which a simulation may
take minutes, hours, or even days to complete.

A parallelized version of the covariance matrix adaptation evolutionary strategy
(CMA-ES) (Hansen et al. 2003) can be used to solve the single-objective optimiza-
tion problems arising in the Bayesian asymptotic approximations. The CMA-ES
algorithm exhibits fast convergence properties among several classes of evolution-
ary algorithms, especially when searching for a single global optimum. The Hessian
estimation required in Bayesian asymptotic approximations can be computed using
the Romberg method (Lyness andMoler 1969). This procedure is based on a number
of system reanalyses at the neighborhood of the optimum,which can all be performed
independently for problems involving either calibration or propagation, and are thus
highly parallelizable. Details can be found in Hadjidoukas et al. (2015).

3.2 Sampling Algorithms

In contrast to asymptotic approximations, sampling algorithms are nonlocal meth-
ods capable of providing accurate representations for the posterior PDF and accurate
robust predictions of output QoI. Sampling algorithms, such asMarkov ChainMonte
Carlo (MCMC) (Metropolis et al. 1953; Hastings 1970; Cheung and Beck 2009) are
often used to generate samples θ(i), i = 1, . . . ,N , for populating the posterior PDF
in (2), estimating the model evidence and computing the uncertainties in output
QoI. Among the stochastic simulation algorithms available, the transitional MCMC
algorithm (TMCMC) (Ching and Chen 2007) is one of the most promising algo-
rithms for finding and populating with samples the important region of interest of
the posterior probability distribution, even in challenging unidentifiable cases and
multimodal posterior distributions. Approximate methods based on Kernels are then
used to estimate marginal distributions of the parameters. In addition, the TMCMC
method yields an estimate of the evidence in (3) of the model class Mi based on the
samples already generated by the algorithm.

Sampling methods can be conveniently used to estimate the multidimensional
integrals (7) and (8) from the samples θ(i), i = 1, . . . ,N , generated from the posterior
probability distribution p(θ|D,M). In this case, the integrals (7) and (8) can be
approximated by the sample estimates
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p(q|M) ≈ 1

N

N∑
i=1

p(q|θ(i),M) (19)

E[G(q; θ)|M)] ≈ 1

N

N∑
i=1

G(q; θ(i)) (20)

respectively. The simplified measures of uncertainties given in (9) are also given by
the sample estimate (20) withG(q; θ) = [q(θ)]k . The sample estimates (19) and (20)
require independent forward system simulations that can be executed in a perfectly
parallel fashion.

3.2.1 Parallel TMCMC in HPC Environment

HPC techniques are used to reduce the time-to-solution of TMCMC algorithm at
the computer hardware level. The TMCMC algorithm is very-well suited for paral-
lel implementation in a computer cluster. Details of the parallel implementation are
given in Angelikopoulos et al. (2012), Hadjidoukas et al. (2015). Specifically, a par-
allel implementation algorithm is activated at every stage of the TMCMC algorithm
exploiting the large number of short, variable length, chains that need to be generated
at the particular TMCMC stage. Dynamic scheduling schemes can be conveniently
used to optimally distribute these chains in a multihost configuration of complete
heterogeneous computer workers. The dynamic scheduling scheme ensures an effi-
cient balancing of the loads per computer worker in the case of variable run time
of likelihood function evaluations and unknown number of surrogates activated dur-
ing estimation. Specifically, each worker is periodically interrogated at regular time
intervals by the master computer about its availability and samples from TMCMC
chains are submitted to the workers on a first-come first-serve basis to perform the
likelihood function evaluations so that the idle time of the multiple workers is min-
imized. It should be noted that uncertainty propagation using sampling algorithms
is highly parallelizable. For infinite computing resources, the time-to-solution for
making robust prediction of a number of response QoI can be of the order of the
time-to-solution for one simulation run. The parallelized version of the TMCMC
algorithm for Bayesian UQ has been implemented in software and is available in
http://www.cse-lab.ethz.ch/software/Pi4U.

3.2.2 Parallel Subset Simulation in HPC Environment For Robust
Prior and Posterior Reliability

For rare events, the subset simulation SubSim (Au andBeck 2011) is computationally
the most efficient sampling algorithm to provide an accurate estimate of the multidi-
mensional failure probability integral (11) with the fewest number of samples. The
SubSim was first introduced to handle the conditional probability of failure integrals

http://www.cse-lab.ethz.ch/software/Pi4U
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F(θ) formulated by (11) with z = ψ and then the robust prior reliability integral (11)
with z = (ψ, θ) and p(z|M) = p(ψ|M)π(θ|M). Certain improvements on theMCMC
sampling within SubSim have recently been proposed by Papaioannou et al. (2015).

In Jensen et al. (2013), SubSimwas extended to treat the robust posterior reliability
integrals of the form (11) with z = (ψ, θ) and p(z|M) = p(z|D,M), the posterior
PDF. It should be noted that usually due to independence between ψ and θ, the PDF
of z is p(z|M) = p(ψ|M)p(θ|D,M) which simplifies the evaluation of the integral
with SubSim (Jensen et al. 2013). SubSim is highly parallelizable and its parallel
implementation for heterogeneous architectures is discussed in Hadjidoukas et al.
(2015).

4 Implementation in Structural Dynamics

In structural dynamics the formulation of the likelihood in (2) depends on the mod-
els and type of measurements used. Details in the implementation of the Bayesian
framework for the linear and nonlinear model cases are presented next, separately
for each model case and measurements available.

4.1 Uncertainty Quantification of Linear Models
in Structural Dynamics

For linear models of structures the quantification of the uncertainties in the model
parameters is often based on identified modal frequencies and mode shapes at the
locations where sensors are placed. Details on the formulation of the likelihood in
(2) can be found in a number of published papers (Vanik et al. 2000; Yuen et al. 2006;
Simoen et al. 2013a, b; Christodoulou and Papadimitriou 2007; Goller et al. 2012).

4.1.1 Likelihood Formulation Based on Modal Properties

To apply the Bayesian formulation for parameter estimation of linear FE models, we
consider that the dataD consist of the square of the modal frequencies, λ̂r = ω̂2

r , and
the mode shapes φ̂

r
∈ RN0,r , r = 1, . . . ,m, experimentally estimated using vibration

measurements, where m is the number of identified modes and N0,r is the number of
measured components for mode r. Usually, it is convenient to measure the vibration
of the structure under operational conditions by placing sensors at various locations
to measure output only response time histories. There are a number of techniques
for estimating the modal frequencies and mode shapes from output only vibration
measurements.Notable is theBayesianmodal parameter estimationmethodproposed
in Au (2012). In addition to themost probable values of the modal characteristics, the
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uncertainty in these characteristics is also estimated and asymptotically approximated
by Gaussian distributions.

Consider a parameterized linear FE model classM of a structure and let θ ∈ RNθ

be a vector of free structural model parameters to be estimated using a set of modal
properties identified from vibration measurements. Let ωr(θ) and φ

r
(θ)N0,r be the

r-th modal frequency and modeshape at N0,r DOF, respectively, predicted by the
model for a given value of the θ of the model parameters. The likelihood p(D|θ,M)

in (2) is built up using the following considerations. The prediction error equation
for the r-th modal frequency is introduced

ω̂2
r = ω2

r (θ) + ελr
(21)

where ελr
is the model error taken to be Gaussian with zero mean and standard

deviation σωr ω̂r , with the unknown parameter σωr to be included in the parameter set
θe to be estimated.

The prediction error equation for the r-th mode shape is

φ̂
r
= βr(θ)φr

(θ) + εφ
r

(22)

where εφ
r
is the model error taken to be Gaussian with zero mean and covariance

matrix diag(σ2
φr

||φ̂
r
||2), with the unknown σ2

φ
r
to be included in the parameter set

to be estimated, and βr(θ) = φ̂
T

r
φ
r
(θ)/

∥∥∥φ
r
(θ)

∥∥∥2 is a normalization constant that

guaranties that the measured mode shape φ̂
r
at the measured DOF is closest to the

model mode shape βr(θ)φr
(θ) predicted by the particular value of θ, and ||z||2 = zTz

is the usual Euclidian norm.
The squares of the modal frequencies λr(θ) = ω2

r (θ) and the mode shape compo-
nents φ

r
(θ) = Lrϕr

(θ) ∈ R
N0,r at the N0 measured DOF are computed from the full

mode shapes ϕ
r
(θ) ∈ R

n that satisfy the eigenvalue problem

[K(θ) − λr(θ)M(θ)]ϕ
r
(θ) = 0 (23)

whereK(θ) ∈ R
n×n andM(θ) ∈ R

n×n are, respectively, the stiffness and mass matri-
ces of the FE model of the structure, n is the number of model DOF, and Lr ∈ RN0,r×n

is an observation matrix, usually comprised of zeros and ones, that maps the nmodel
DOF to the N0,r observed DOF for mode r. For a model with large number of DOF,
N0,r 	 n.

The structural model classM is augmented to include the prediction error model
class that postulates zero-mean Gaussian models for the modal frequency and mode
shape error terms ελr and εφ

r
in (22) and (23), respectively, with equal variances σ2

for all modal frequency errors ελr and equal variances σ2/w for all mode shape errors
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εφ
r
. Assuming σ2

ωr
= σ2 and σ2

φ
r
= σ2

ωr
/w = σ2/w, the likelihood function can then

readily obtained in the form

p(D|θ,M) = 1(√
2πσ

)m(N0+1)
exp

[
− 1

2σ2
J(θ;w)

]
(24)

where

J(θ;w) = J1(θ) + wJ2(θ) (25)

In (25) the following modal frequency residuals

J1(θ) =
m∑
r=1

ε2λr
(θ) =

m∑
r=1

[λr(θ) − λ̂r]
2

λ̂2
r

(26)

and mode shape residuals

J2(θ) =
m∑
r=1

ε2φ
r
(θ) =

m∑
r=1

∥∥∥βr(θ)φr
(θ) − φ̂

r

∥∥∥2
∥∥∥φ̂

r

∥∥∥2
(27)

measure the differences ελr and εφ
r
for the modal frequencies and mode shape com-

ponents between the identified modal data and the model predicted modal data,
respectively. It is worth noting that it can be shown that the square of the modeshape
residuals in (27) is related to the modal assurance criterion (MAC) value of the mode
r by Papadimitriou et al. (2011)

ε2φ
r
(θ) = 1 − MAC2

r (θ) = 1 −
⎡
⎢⎣

[
φ
r

]T
φ̂
r∥∥∥φ

r

∥∥∥
∥∥∥φ̂

r

∥∥∥

⎤
⎥⎦

2

≥ 0 (28)

since 0 ≤ MAC2
r ≤ 1. Thus J2(θ) in (27) is also a measure of the distance of the

square MAC value from one, or equivalently, a measure of the correlation of the
model predicted mode shape and the measured mode shape.

4.1.2 Model Reduction, Surrogate, and Parallelization

TheBayesian tools for identifying FEmodels as well as performing robust prediction
analyses require a moderate to very large number of repeated system analyses to be
performed over the space of uncertain parameters. Consequently, the computational
demands depend highly on the number of system analyses and the time required for
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performing a system analysis. For linear FE models with large number of DOFs, this
can increase substantially the computational effort to excessive levels. In addition,
computational savings are achieved by adopting parallel computing algorithms to
efficiently distribute the computations in availablemulti-core CPUs (Angelikopoulos
et al. 2012; Hadjidoukas et al. 2015). Specifically, the �4U software (Hadjidoukas
et al. 2015), based on a parallelized version of the Transitional MCMC (TMCMC)
algorithm, can be used to efficiently distribute the computations in available multi-
coreCPUs.Moreover,X-TMCMCmethods (Angelikopoulos et al. 2015) that include
kriging within TMCMC can also be used to replace the full system simulations by
fast approximations, reducing by an order of magnitude the number of full system
reanalyses.

In structural dynamics, fast and accurate component mode synthesis (CMS) tech-
niques, consistent with the finite element (FE) model parameterization, can be inte-
grated with Bayesian techniques to reduce efficiently and drastically the model and
thus the computational effort (Papadimitriou and Papadioti 2013; Jensen et al. 2014).
Model reductions techniques (Papadimitriou and Papadioti 2013; Goller et al. 2011)
can achieve reductions of the size of the stiffness and mass matrices by several
orders of magnitude. In particular, computational efficient model reduction tech-
niques based on component mode synthesis have been developed recently to handle
certain parameterization schemes for which the mass and stiffness matrices of a
component depend either linearly or nonlinearly on only one of the free model para-
meters to be updated, often encountered in FE model updating formulations. In such
schemes, it has been shown that the repeated solutions of the component eigenprob-
lems are completely avoided, reducing substantially the computational demands,
without compromising the solution accuracy. For the case of linear and nonlinear
dependence of the stiffness matrix of a structural component on a model parameter,
the methodology is presented in Papadimitriou and Papadioti (2013) and Jensen et al.
(2014, 2015). The model reduction methods are applicable to both asymptotic and
stochastic simulation tools used in Bayesian framework.

4.1.3 Gradient Estimation and Adjoint Techniques

For Bayesian asymptotic approximations, first-order and second-order adjoint tech-
niques have been developed (Ntotsios and Papadimitriou 2008) using the Nelson’s
method (Nelson 1976) to efficiently compute the required first- and second-order
sensitivities in the optimization problems and the Hessian computations. In Nelson
method the gradient of the modal frequencies and the modeshape vector of a specific
mode are computed from only the value of the modal frequency and the modeshape
vector of the same mode, independently of the values of the modal frequencies and
modeshape vectors of the rest of the modes. For structural model classes with large
number of degrees of freedom and very few contributing modes, this representation
of the gradients clearly presents significant computational advantages over methods
that represent modeshape gradients as a weighted, usually arbitrarily truncated, sum
of all system modeshape vectors (Fox and Kapoor 1968). Specifically, following
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(Ntotsios and Papadimitriou 2008), the gradient of the square error ε2λr
(θ) in (26) is

given by

∂ε2λr
(θ)

∂θj
= ∂ε2λr

(θ)

∂λr

∂λr

∂θj
=

[
∂ε2λr

(θ)

∂λr

ϕT
r

]
(Kj − ω2

r Mj)ϕr
(29)

and the gradient of the square error ε2φ
r
(θ) in (27) is given by

∂ε2φ
r
(θ)

∂θj
= −

[
xTr (I − Mϕ

r
ϕT
r
)
]
(Kj − ω2

r Mj)ϕr
(30)

where xr is given by the solution of the linear system of equations

A∗T
r xr = LT∇ϕ

r
ε2ϕ

r
(θ) (31)

with

∂ε2λr
(θ)

∂λr
= 2εωr

(θ)

ω̂2
r

(32)

∇T
ϕ
r
ε2ϕ

r
(θ) =

2εϕ
r
(θ)βr∥∥∥ϕ̂
r

∥∥∥
(33)

while Kj ≡ ∂K/∂θj and Mj ≡ ∂M/∂θj. In (31), the matrix A∗
r is used to denote the

modified matrix derived from Ar = K − ω2
r M by replacing the elements of the k-

th column and the k-th row by zeroes and the (k, k) element of Ar by one, where
k denotes the element of the modeshape vector φ

r
with the highest absolute value

(Nelson 1976).
The computation of the derivatives of the square errors for the modal properties

of the r-th mode with respect to the parameters in θ requires only one solution of
the linear system (31), independent of the number of parameters in θ. For a large
number of parameters in the set θ, the above formulation for the gradient of the
mean error in modal frequencies given in (29) and the gradient of the mean error of
the modeshape components in θ is computationally very efficient and informative.
The dependence on θj comes through the term Kj − ω2

r Mj and the term Mj. For the
case where the mass matrix is independent of θ, Mj = 0 the formulation is further
simplified. The end result of the proposed adjoint method is the solution of as many
linear systems of equations as the number of model predicted modes. The size of the
linear systems equals the number of the DOFs of the structural model which adds to
the computational burden. However, the linear systems are independent of each other
and can be carried out in parallel, significantly accelerating the time-to-solution. The
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integration of model reduction techniques with the adjoint methods can be found in
Papadimitriou and Papadioti (2013).

It should be noted that for the special case of linear dependence between
the global mass and stiffness matrices on the parameters in the set θ, that is,
M(θ) = M0 + ∑Nθ

j=1 Mjθj and K(θ) = K0 + ∑Nθ

j=1 Kjθj, the gradients of M(θ) and
K(θ) are easily computed from the reduced constant matrices M0, K0, Mj and Kj,
j = 1, . . . ,Nθ. In order to save computational time, these constant matrices are com-
puted and assembled once and, therefore, there is no need this computation to be
repeated during the iterations involved in optimization algorithms. For the general
case of nonlinear dependence between the global mass and stiffness matrices on the
parameters in the set θ, the matrices Mj and Kj involved in the formulation can be
obtained numerically at the element level and assembled to form the global matrices.

It should be noted that a similar analysis exists for obtaining the Hessian of the
objective functions ε2ωr

(θ) and ε2ϕ
r
(θ) from the second derivatives of the eigenvalues

and the eigenvectors, respectively.Details can be found inNtotsios andPapadimitriou
(2008).

4.2 Uncertainty Quantification of Nonlinear Models
In Structural Dynamics

The nonlinearities in structural dynamics arise from various sources, includingmate-
rial constitutive laws, contact, sliding, and impact between structural components,
nonlinear isolation devices such as nonlinear dampers in civil infrastructure and non-
linear suspension models in vehicles. In a number of structural dynamics cases, the
nonlinearities are localized in isolated parts of a structure, while the rest of the struc-
ture behaves linearly. Such localized nonlinearities can be found in vehicles where
the frame usually behaves linearly and the nonlinearities are activated at the suspen-
sion mainly due to the dampers. In civil engineering structures, the nonlinearities are
at some cases localized at the various structural elements (dampers, etc.) introduced
to isolate the structure during system operation.

For nonlinear models of structures the quantification of the uncertainties in the
model parameters depends on the measured quantities that are available. The like-
lihood function p(D|θ,M) in (2) is formulated based on either full response time
histories or frequency response spectra.

4.2.1 Likelihood Formulation Based on Response Time Histories

To apply the Bayesian formulation for parameter calibration of both linear and
nonlinear models, we consider that the data consists of measured time histories
D = {

x̂j (k) ∈ R, j = 1, . . . ,N0, k = 1, . . . ,ND
}
at time instances t = k�t, of N0

response quantities (displacements, accelerations and forces) at different points in
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the structure, where ND is the number of the samples data using a sampling period
�t. Let also

{
xj(k; θ) ∈ R, j = 1, . . . ,N0, k = 1, . . . ,ND

}
be the predictions of the

response time histories for the same quantities and points in the structure, from the
nonlinear model corresponding to a particular value of the parameter set θ. The mea-
sured and the model predicted response time history measurements satisfy for each
time instant k the prediction error equations

x̂j(k) = xj(k; θ) + ej(k) (34)

j = 1, . . . ,N0 and k = 1, . . . ,ND. The difference between the measured and model
predicted response is attributed to both experimental and modeling errors.

The prediction errors ej(k), measuring the fit between themeasured and themodel
predicted response time histories, are modeled by Gaussian distributions. The like-
lihood formulation depends on the user postulation of the correlation structure of
the prediction errors in (34). Herein, it is assumed that the model prediction errors
are uncorrelated in time. At different time instants the terms ej(k) are assumed to
be independent zero-mean Gaussian variables with equal variances for all sampling
data of a response time history, i.e., ej(k) ∼ N(0,σ2

j ). Each measured time history
is generally obtained from a different sensor (displacement, acceleration or force
sensor) with a different accuracy and noise level, giving rise to as many prediction
error variances σ2

j as the number of measured time histories. The prediction error
parameters σj, j = 1, . . . ,N0, are contained in the prediction error vector σ ∈ RN0 .
Herein, the prediction error parameters are considered unknown and are included
in the parameters to be calibrated given the data, along with the structural model
parameters in the set θ. The likelihood formulation for model prediction errors that
are correlated in time using autoregressive (AR) models to quantify such correlation
is presented in Christodoulou (2006).

The likelihood function p
(
D|θ,M)

, which quantifies the probability of obtaining
the data given a specific set of structural parameters and prediction error parameters,
is derived by noting that the measured time histories x̂j (k) are independent Gaussian
variables with mean xj

(
k; θ

)
and variance σ2

j . Taking advantage of the independence
of the measured quantities both at different time instants of the same time history as
well as between different time histories, the likelihood takes the form

p
(
D|θ,M) =

N0∏
j=1

ND∏
k=1

p
(
x̂j (k) |θ) (35)

Substitutingwith theGaussianPDF for p
(
x̂j (k) |θ) and rearranging terms one obtains

that

p
(
D|θ,M) = 1(√

2π
)NDN0 N0∏

j=1
σND
j

exp

{
−N0ND

2
J
(
θ
)}

(36)



Bayesian Uncertainty Quantification and Propagation (UQ+P) … 157

where

J
(
θ
) = 1

N0

N0∑
j=1

1

σ2
j

Jj
(
θ
)

(37)

with

Jj
(
θ
) = 1

ND

ND∑
k=1

[
x̂j (k) − xj

(
k; θ

)]2
(38)

represents the measure of fit between the measured and the model predicted response
time history for response quantity j.

Formulations of the likelihood for the case where full measured response time
histories are available can be found in Metallidis et al. (2003), Metallidis and Nat-
siavas (2008). The likelihood and the posterior of the parameters of a FE model
are functions of the response time histories predicted by the FE model. Each poste-
rior evaluation requires the integration of the linear or nonlinear set of equations of
motion.

4.2.2 Likelihood Based on Nonlinear Response Spectra

The formulation of the likelihood for the case where frequency response spectra
are available, can be found in Giagopoulos et al. (2013). To apply the Bayesian
formulation for parameter estimation of nonlinear models based on frequency
response spectra, we consider that the data consists of measured response spec-

traD =
{
ŝj(k) ∈ RNo , j = 1, . . . ,N0, k = 1, . . . ,ND

}
ofNo response quantities (dis-

placement, velocity, acceleration strain) at different DOF and at different frequencies
ωk , where k is a frequency index and N is the number of sampled data in the fre-
quency domain. In addition, let

{
sj(k; θm) ∈ RNo , j = 1, . . . ,N0, k = 1 . . . ,ND

}
be

the model response predictions of frequency response spectra, corresponding to the
DOFs where measurements are available, given the model classM and the parameter
set θm ∈ RNθ . It is assumed that the observation data and themodel predictions satisfy
the prediction error equation

ŝj(k) = sj(k; θm) + ej(k) (39)

It is assumed that the error terms ej(k) are independent, both at different frequen-
cies of the same response spectra as well as between response spectra measured at
different locations, an assumption that is very reasonable for the case that the mea-
sured data consists of frequency response spectra. In addition, the error term ej(k) is
assumed to be Gaussian vector with mean zero and variance σ2

j , independent of k.
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Using (39) it follows that the measured quantity ŝj(k) is a Gaussian distribution with
mean sj(k; θm) and variance σ2

j .
Taking advantage of the independence of the prediction errors, the likelihood

p(D|θ,M) is formulated as follows:

p
(
D|θ) =

N0∏
j=1

N∏
k=1

p
(
ŝj (k) |θ) (40)

Using the Gaussian probability density function for sj(k; θm) and substituting in
(40), one obtains the likelihood function in the form (36) where measure of fit J

(
θ
)

between the measured and the model predicted response spectra is given by (37)
with

Jj
(
θ
) = 1

ND

N∑
k=1

[
ŝj (k) − sj

(
k; θ

)]2
(41)

It is clear that the likelihood and the posterior of the model parameters are func-
tions of the frequency response spectra predicted by the FE model. Each posterior
evaluation requires the integration of the nonlinear set of equation of motion of
the structure for as many different number of harmonic excitations as the number
of frequency response spectra ordinates. This, however, increases substantially the
computational effort.

4.2.3 Model Reduction, Surrogates, and Parallelization

Model reduction techniques based on CMS are readily applicable for special class
of problems where the nonlinearities are localized at isolated parts of the structure.
In such cases the structure can be decomposed into linear and nonlinear compo-
nents and the dynamic behavior of the linear components be represented by reduced
models. An implementation of such framework can be found in Jensen et al. (2014,
2015) where it is demonstrated that substantial reductions in the DOFs of the model
can be achieved which eventually yield reductions in computational effort for per-
forming a simulation run without sacrificing the accuracy. Surrogate estimates are
also applicable to reduce the number of full system analyses in sampling techniques
such as TMCMC. The X-TMCMC algorithm (Angelikopoulos et al. 2015) can be
used within parallelized TMCMC in HPC environments (Hadjidoukas et al. 2015) to
reduce the computational effort by one order of magnitude by replacing full system
analyses by approximate kriging estimates. For the case where the measurements are
given as full response time histories, the surrogate estimates are applied to approxi-
mate the value of the log posterior PDF. For the case where the measurements consist
of nonlinear frequency response spectra, it is more convenient computationally to
apply the surrogate estimates for each spectral ordinate of the spectrum (Giagopoulos
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et al. 2013). In addition, in the latter case, it should be pointed out that another par-
allelization level can be introduced in which the frequency response spectral values
can run in parallel, taking advantage of HPC environments to speed up computations
(Hadjidoukas et al. 2015).

4.2.4 Gradient Estimation

For Bayesian asymptotic approximations, analytical approximations of the gradi-
ents of objective functions are not readily available. The development time and
software implementation may be substantial. For certain classes of hysteretic non-
linearities, formulations for the sensitivities of the response quantities to parameter
uncertainties have been developed (Barbato et al. 2007) and can be used within
the Bayesian framework. However, it should be pointed out that such formulation
are model intrusive and are not easily integrated to commercial computer software
packages available for simulating nonlinear structural dynamics problems. For the
model cases where adjoint techniques can be applied, the development time may
also be substantial. However, for a number of important nonlinear class of models
(e.g., impact, hysteretic) or output QoI such as frequency response spectra, adjoint
methods are not applicable. The absence of sensitivity estimates or adjoint formula-
tions may substantially increase the computational cost and/or render gradient-based
optimization algorithms unreliable for use with Bayesian asymptotic approximation
tools. Stochastic optimization and stochastic simulations algorithms within a HPC
environment (Hadjidoukas et al. 2015) are, respectively, the preferred algorithms to
be used with Bayesian asymptotic and stochastic simulation tools.

5 Application

The Bayesian framework for UQ+P is demonstrated for linear structural dynamics
applications by developing a high-fidelity FE models of the Metsovo bridge using
modal characteristics identified from ambient vibration measurements. These mod-
els are representative of the initial structural condition of the bridge and can be
further used for structural health monitoring purposes and for updating structural
reliability and safety. The purpose of the present application is mainly to demon-
strate the Bayesian UQ framework and the computational effectiveness of proposed
model reduction technique based on CMS. The efficiency of the surrogate techniques
based on kriging method introduced within the sampling algorithm TMCMC has
been explored in Angelikopoulos et al. (2015). The capabilities of the parallelization
procedures has been reported in Hadjidoukas et al. (2015). The application of the
Bayesian UQ+P framework in nonlinear models using time histories and frequency
response spectra can be found elsewhere (Giagopoulos et al. 2006, 2013; Green et al.
2015; Green 2015; Jensen et al. 2014, 2015).
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5.1 Metsovo Bridge Description, Instrumentation,
and Modal Identification

The Metsovo bridge, shown in Fig. 1, is the highest reinforced concrete bridge of the
Egnatia Motorway, with the height of the tallest pier equal to 110m. The total length
of the bridge is 537m. The bridge has 4 spans of length 44.78, 117.87, 235, 140m and
3 piers of which the left pear (45m) supports the boxbeam superstructure through
pot bearings (movable in both horizontal directions), while the central (110m) and
the right (35m) piers connect monolithically to the structure. The total width of the
deck is 13.95m, for each carriageway. The superstructure is limited prestressed of
single boxbeam section, of height varying from 4.00 to 13.5m. The central and the
right piers are founded on huge circular 12.0m rock sockets in a depth of 25 and
15m, respectively.

Acceleration measurements were collected under normal operating conditions of
the bridge in order to identify the modal properties of the structure (natural fre-
quencies, mode shapes, damping ratios). The measured data were collected using 5
triaxial and 3 uniaxial accelerometers paired with a 24-bit data logging system and
an internal SD flash card for data storage. The synchronization of the sensors was
achieved using a GPS module in each of the sensors. The excitation of the bridge
during themeasurements was primarily due to road traffic, which ranged frommotor-
cycles to heavy trucks, and environmental excitation such aswind loading and ground
microtremor.

Given the limited number of sensors and the large length of the deck, multiple sets
of measurements are performed in order to identify the type of the modes accurately.
Specifically, 13 sensor configurations are used to cover the entire length of the deck.
The sensors are located approximately 20m apart. Each measurement lasted 20min
with a sampling rate of 200Hz. The reference sensors, consisting of one triaxial and
three uniaxial sensors (one vertical and two horizontal), one at each side of the bridge.
Their purpose is to provide common measurement points along different configura-
tions in order to assemble the mode shapes (Au 2010; Yan and Katafygiotis 2015).
The locations of the reference sensors was obtained by minimizing the information

Fig. 1 Metsovo bridge
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entropy using an optimal sensor location theory (Papadimitriou and Lombaert 2012;
Yuen and Kuok 2015) so as to provide the highest information content for identifying
the modal parameters of the structure.

Following a Bayesian identification methodology (Au 2012) and a mode shape
assembling algorithm (Au 2010), the natural frequencies and damping ratios of the
structure were extracted, and the mode shape components of each configuration were
combined to produce the full mode shapes of the structure at all 159 sensor locations
covered by the 13 configurations. For comparison purposes, Table1 presents the
mean and the standard deviation of the experimentally identified modal frequencies
for the lowest 10 modes of the Metsovo bridge. Representative assembled mode
shapes are shown in Fig. 2 and compared with the mode shapes predicted by the
nominal FE model of the bridge.

Table 1 Experimentally identified (EXP) and model predicted mean (MOD) modal frequencies,
as well as MAC values between experimentally identified and model predicted modeshapes

Mode Type EXP mean EXP std Nominal MOD mean MAC mean

1 Transverse 0.306 0.0007 0.318 0.290 0.9988

2 Transverse 0.603 0.0014 0.622 0.581 0.9841

3 Bending 0.623 0.0008 0.646 0.641 0.9983

4 Transverse 0.965 0.0084 0.989 0.816 0.9989

5 Bending 1.047 0.0066 1.112 1.088 0.9965

6 Transverse 1.139 0.0049 1.173 1.117 0.9997

7 Bending 1.428 0.0042 1.516 1.446 0.9589

8 Transverse 1.697 0.0112 1.711 1.573 0.9981

Fig. 2 Experimentally identified and model predicted mode shapes left to right first transverse,
first bending, fourth transverse, third bending
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5.2 Finite Element Model of Bridge

Two classes of FE models are created using three-dimensional tetrahedron quadratic
Lagrange finite elements. The first model is a fixed-base finite element model. The
nominal values of the modulus of elasticity of the deck and the three piers were
selected to be the values used in design. A coarse FE mesh is chosen to predict the
lowest 20 modal frequencies and mode shapes of the bridge with sufficient accuracy.
The largest size of the elements in the mesh is of the order of the thickness of the
deck cross section. This model has 562,101 DOFs and is used next to check in detail
the model reduction technique and its effectiveness in terms of size reduction and
accuracy.

The second model takes into account the soil–structure interaction by modeling
the soil with large blocks of material and embedding the piers and abutments into
these blocks. The nominal values of the soil stiffness was selected based on design
values. A large uncertainty in this values was reported from soil tests. Several mesh
sizes were tried, and an accuracy analysis was performed in order to find a reasonable
trade-off between the number of degrees of freedom of the model and the accuracy in
modal frequencies. By trying different mesh sizes in the deck, piers, and soil blocks,
a mesh of 830.115 DOFs was kept for the bridge–foundation–soil structure model.
This mesh was found to cause errors of the order of 0.1–0.5% in the first 20 modal
frequencies, compared to the smallest possible mesh sizes which had approximately
3 million DOFs. In that way the model was optimized with respect to the number
of DOFs using a variable element size in each part of the bridge. This can be noted
especially in Fig. 3 where the size of the elements grows larger in the soil blocks.

Fig. 3 Finite element mesh
of the bridge with the soil
blocks
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5.3 Model Reduction Based on CMS

Model reduction is used to reduce the model and thus the computational effort to
manageable levels. Specifically, the parameterization-consistent component mode
synthesis (CMS) technique is applied. To demonstrate the effectiveness of the model
reduction technique, the fixed-base FE model of the bridge is considered, ignoring
the soil stiffness.

Let ωc be the cutoff frequency which represents the highest modal frequency that
is of interest in FE model updating. Herein, the cutoff frequency is selected to be
equal to the 20th modal frequency of the nominal model, i.e., ωc = 4.55 Hz. For
demonstration purposes, the bridge is divided into nine physical components with
eight interfaces between components as shown in Fig. 4. For each component it is
selected to retain all modes that have frequency less than ωmax = ρωc, where the
ρ values affect the computational efficiency and accuracy of the CMS technique.
The total number of internal DOFs before the model reduction is applied and the
number of modes retained for various ρ values are given in Table2. For the case
ρ = 8, a total of 286 internal modes out of the 558,801 are retained for all nine
components. The total number of DOFs of the reduced model is 3,586 which also
includes 3,300 constraint interface DOFs for all components. It is clear that a two
orders ofmagnitude reduction in the number ofDOFs is achieved usingCMS. Table2
also shows the fractional error between the modal frequencies computed using the
complete FE model and the ones computed using the CMS technique for ρ = 2, 5,
and 8. It is seen that the error fall below 0.02% for ρ = 8, 0.17% for ρ = 5 and
1.10% for ρ = 2. A very good accuracy is achieved for the case of ρ = 5.

Fig. 4 Components of FE model of the bridge
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Table 2 Number ofDOFandpercentagemodal frequency error for the full (unreduced) and reduced
models

DOF Full model ρ = 8 ρ = 5 ρ = 2 ρ = 8 ρ = 5 ρ = 2

ν = 200 ν = 200 ν = 200

Internal 558,801 286 100 31 286 100 31

Interface 3,300 3,300 3,300 3,300 306 306 306

Total 562,101 3,586 3,400 3,331 592 406 337

Highest percent-
age error (%)

0.00 0.02 0.17 1.10 0.20 0.30 1.20

The large number of the interface DOFs can be reduced by retaining only a
fraction of the constrained interface modes (Papadimitriou and Papadioti 2013). For
each interface, only themodes that have frequency less thanωmax = νωc are retained,
where ν is user and problem dependent. Results for ν = 200 are given in Table2.
It can be seen that the fractional error for the lowest 20 modes of the structure fall
below 1.20% for ν = 200. In particular, for ν = 200 and ρ = 5 the reduced system
has 406 DOFs fromwhich 100 generalized coordinates are fixed-interface modes for
all components and the rest 306 generalized coordinates are constrained interface
modes. The error in this cases falls below 0.3%.

Thus, using CMS a drastic reduction in the number of generalized coordinates is
obtained which can exceed three orders of magnitude, without sacrificing the accu-
racy with which the lowest model frequencies are computed. The time-to-solution
for one run of the reduced model is of the order of a few seconds which should be
compared to approximately 2min required for solving the unreduced FE model.

5.4 Uncertainty Calibration of Bridge FE Model

The FE model of the bridge–foundation–soil system is next calibrated based on
the experimentally identified modal frequencies and the formulation presented in
Sect. 4.1 for w = 1. Model reduction was performed using the same structural com-
ponents as the ones used for the fixed-base bridge model. In addition five more
structural components were used that correspond to the five rectangular soil blocks
added to model the flexibility of the soil. The reduced FEmodel using only reduction
in the internal DOF with ρ = 5 has 16205 DOF, while the reduced FE model with
internal and interface DOF reduction has 1.891 DOF, corresponding to two to three
orders reduction in DOF.

The FE model of the bridge–foundation–soil system is parameterized using three
parameters associated with the modulus of elasticity of one or more structural com-
ponents. Specifically, the first parameter θ1 accounts for the modulus of elasticity of
the deck, components 1, 2, 4, 5, 6, and 8 of the bridge as shown in Fig. 4. The second
parameter θ2 accounts for the modulus of elasticity of the three piers (components 3,
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7, and 9), assumed to be perfectly correlated, while the third parameter θ3 accounts
for the modulus of elasticity of the soil, assumed to be the same at all bridge sup-
ports. The model parameters in the set θ scale the nominal values of the properties
that they model. The lowest eight modal frequencies of the left branch of Metsovo
bridge predicted by the nominal model are presented in Table1 and are compared to
the modal frequencies estimated using the ambient vibration measurements.

The prior distribution was assumed to be uniform with bounds in the domain [0.2,
2] ×[0.2, 2] × [0.01, 10] for the structural model parameters and in the domain
[0.001, 1] for the prediction error parameter σ. The domain for the soil parameter
was deliberately chosen larger in order to account for the large uncertainty in the
values of the soil stiffness reported in the design and be able to explore the full effect
of the soil stiffness on the model behavior.

The calibration is done using the lowest 8 modal frequencies and mode shapes
identified for the structure. Representative results are obtained using the TMCMC
for the bridge–foundation–soil FE model with the three structural model parameters.
The TMCMC is used to generate samples from the posterior PDF of the structural
model and prediction error parameters and then the uncertainty is propagated to
estimate the uncertainty in the modal frequencies of the bridge. 1000 samples per
TMCMC stage are used, resulting to a total number of approximately 10000 model
simulation runs. The updated marginal distributions of the model parameters are
shown in Fig. 5. It can be seen that the value of the most uncertain parameter prior to
the data, the soil stiffness, is approximately 0.4 times the nominal value with small
uncertainty of the order of 2%. The updated most probable values of the deck and
pier stiffness are estimated to be approximately 1.12 and 1.02 the nominal values,
with uncertainties of the order of 3% and 11%, respectively.

The mean of the updated uncertainty in the first 8 modal frequencies and MAC
values between the experimentally identified and model predicted modeshapes are
presented in Table1. The predictions of the mean values are overall closer to the
experimental data than the values predicted from the nominal model. However, there
is a trade-off in the fit, according to which a number of the calibrated modal fre-
quencies become closer to the experimental ones, while a number of them move
further away from the experimental modal frequencies. The overall fit between the
experimental and the model predicted modal characteristics is summarized in Fig. 6
which shows the frequency fits and the mode shape fits using the MAC values.

Fig. 5 Marginal posterior distribution of model parameters. (1) Deck, (2) piers, (3) soil
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Fig. 6 Left Frequency fits, rightMAC values between measured and model predicted mode shapes

5.5 Computational Issues

The model nonintrusive TMCMC algorithm used within Bayesian tools for model
parameter uncertainty quantification and calibration of theMetsovo bridge requires a
moderate to large number of approximately 10000 FEmodel simulation runs. For the
large-order FE model developed for the Metsovo bridge with hundreds of thousands
DOFs, the computational demands involved are excessive due to the several minutes
required to compete one model simulation run. From the computational point of
view, the analyses can be performed using model reduction, surrogate models, and
the parallelized TMCMC using the �4U software (Hadjidoukas et al. 2015). Model
reduction techniques drastically reduce size of the FE model by two to three orders
of magnitude, from a little less than a million DOFs to a couple of thousand DOFs.
Surrogate models reduce the number of model reanalyses by one order of magnitude
(Angelikopoulos et al. 2015). The reduction in computing time also scales linearly
with the number of available cores when parallel computing algorithms are activated.
Herein the analysis was performed in a 4-core double-threaded computer using the
model reduction technique. Overall more than four orders of magnitude reduction
in computational time was achieved in performing the model updating. The time-
to-solution is approximately 8–9min, four orders of magnitude less than the time
required for the full model run in a sequentially computing environment.

6 Conclusions

A Bayesian framework was presented for estimating the uncertainties in the struc-
tural and prediction error model parameters, selecting the best models of structural
components among competing alternatives, and propagating uncertainties for robust
response and reliability predictions. Asymptotic approximations and sampling algo-
rithms were proposed for Bayesian UQ+P. In Bayesian asymptotic approximations,
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gradient-based optimization algorithms require the availability of direct model out-
put sensitivity analyses or more efficient adjoint techniques. Gradient-free stochastic
optimization algorithms such as CMA-ES are highly parallelizable and competitive
alternatives when a HPC environment is available. In Bayesian sampling techniques,
the TMCMC and the kriging-based X-TMCMC are highly parallelizable algorithms
that can be used in a HPC environment to efficiently distribute the large number
of independent system simulations in available multi-core CPUs. Such techniques
have been implemented in the �4U software (Hadjidoukas et al. 2015) that can be
downloaded from http://www.cse-lab.ethz.ch/software/Pi4U.

The implementation of the framework in structural dynamics was outlined for
linear structural models using experimental identified modal frequencies and mode-
shapes, as well as for nonlinear structural models using either measured response
time histories or frequency response spectra. To efficiently handle large-order mod-
els of hundreds of thousands or millions degrees of freedom, and localized nonlinear
actions activated during system operation, fast and accurate componentmode synthe-
sis (CMS) techniques, consistent with the finite element model parameterization, are
employed that achieve drastic reductions in the model order and the computational
effort. Surrogate models based on the kriging techniques and implemented within
X-TMCMC are also used to substantially speed up computations by up to one order
of magnitude, avoiding full reanalyses of the unreduced or reduced models.

It is demonstrated with an application on a full-scale bridge that these HPC and
model reduction techniques, integrated within Bayesian tools, can be effective in
calibrating the uncertainty of FE models with hundred of thousands DOF, achiev-
ing drastic reductions in computational effort by more than three orders of mag-
nitude. The integration of model reduction techniques, surrogate models and HPC
within Bayesian uncertainty quantification and propagation tools can result in drastic
reduction of computational time to manageable levels for complex models used for
simulations of structural dynamics and related engineering systems.
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